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ELECTRON VELOCITY SHEAR INSTABILITY IN THE AURORAL IONOSPHERE

I. Introduction

Electron streams flowing in magnetic fields are a comnmon occurrence in
terrestrial and astrophysical plasmas, e.g., the earth’s ionosphere and
magnetosphere [Arnoldy, 1974 Anderson _and Vondrak, 1975], and solar flares
[Sturrock, 1974]. These streams have been observed flowing parallel or
perpendicular to the magnetic field with the flow often spatially varying
perpendicular to the magnetic field. It is well know that this flow
configuration 1is unstable [Chandrasekhar, 1957] and subject to a Kelvin-
Helmholtz~like velocity shear instability. For the ionosphere-magnetospheric
plasma, Webster [1957] suggested the possible connection between small scale
structures in auroral arcs and instabilities arising from electron E x B flous
perpendicular to the magnetic field. However, there is considerable evidence
[Arnoldy 1981, and references therein] that strong inhomogeneous electron
flows parallel to the geomagnetic field also exist near auroral arcs. To our
knowledge, the instabilities of transverse sheared electron streams flowing
parallel to the cagnetic field has not been fully discussed in a space plasma
physics context.

In the following we present a linear kinetic theory of transverse
velocity shearad electron flows parallel to the magnetic field (Harrisonm,
1963; Harrison_and Stringer, 1963; Mikhailovskii and Rukhadze, 1966 Rome and
Briggs, 1972). Qur treatment, which includes density gradients, arbitrary
Te/Ti’ background ions and electron collisions, 1is applicable to the
low 8 (particle pressure/magnetic pressure) weakly ionized auroral ionospheric
plasma. We show that the interface between downward flowing hot electrons and
upward flowing return current cold electrons is unstable to a high frequency
electron velocity shear driven instability. 1In Section Il we derive a general
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kinetic theory and present our principal results. In Section III we summarize

our findings and discuss the nonlinear implications of this instability.

II. Theory
A. Physical Mechanism of the Instability

We first present a simple physical picture of the instability driven
by a transversely sheared electron flow along a magnetic field (Rome _and
Briggs, 1972). The magnetic field B =B ;z is taken to be counstant in space
and time. The ions are assumed to form an immobile, homogeneous background,
while the electrons are assumed to have an inhomogeneous flow
velocity Yoe = Voe(x)e; such that Voe(x) = (x-xo) avoe/ax with avoe/ax < 0.
We impose upon this configuration a two-dimensfonal, perturbed electric field
6E = GEy;y + GEZ;Z as shown in Fig. (1). The perturbation force in the z-

direction acting on an electron fluid element at x = X,, can be written

F = & + &
ez ez ez
a
where §F = -~ @ 6
ez z

d
SFez = - svex(avoe/ax)
and 8V = - c6E /B is the perturbed 6E x B drift due to SE_. Here, §F2  is
ex y ~ "~ y ez
the "acceleration" force due to GEz which acts to neutralize the charge
imbalance, while GFiz is the '"deceleration" force due to the convection
a d a
term (§V + V)V and opposes éFez when avoe/ax < 0. Thus, when GFez > GFez’ the

force imbalance on an electron fluid element leads to an enhancement of charge

separation, and hence, instability. For electrostatic fluctuations,
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Fig. 1 — Schematic drawing illustrating basic physical mechanism of electron velocity
shear instability. The xz-plane lies in the plane of the paper with the y-axis directed
out of the paper. The positive (+) signs represent excess positive charge while the nega-
tive (-) signs indicate negative charge.
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éEz = -1 k26¢ and 6Ey a - i ky §¢, where §¢ is the electrostatic potential;
this gives the following instability criterion |(1/ne)ave0/ax| > Ikz/kyl. We

prove this criterion rigorously in the nex: sections.

B. Dispersion Equation
We consider a plasma configuration as shown in Figure 2. Note that
the ions are assumed to have no flow in the z-direction and that the
temperature 1s taken to be constant. We counsider only electrostatic
oscillations and assume perturbed quantities vary as expli (kyy+kzz-wt)]
with ki/k; << 1. We assume a weakly inhomogeneous plasma (rii << 12 where

r is the mean ion Larmor radius and L is the scale length of the density and

Li
velocity gradients) and make use of the local approximation

(k§ > 52/3x2 »> 1/L?). We assume that Q% << w? K« Qg so that the ions can be
considered unmagnetized and the electrons magnetized. Finally, we include
electron collisions in the analysis, i.e., electron-ion collisions.

The unperturbed electron distribution function is given by
F w2, v, O =1 (w2 Y2 expl-(v2+(v,~v__(x))?)/v2] (1)
oe' L "’ ° oe e L “oe e

where v2 = v2 +v2 v =v and X =x - Vv /9 are constants of motion.
>
1 X y z y e

i

1/2

Here, Ve = (ZTe/me) and Qe = eBo/mec are the electron thermal velocity and

cyclotron frequency, respectively. We expand (1) about x = 0 and obtain
v
m Ly oe .

2 ~ 2 - — 2=
Foe(vl’ ME X) Foe (vi’ VH) Qe Ix
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Fig. 2 — Basic cartesian geometry used to discuss electron velocity
shear instability. The k-vector shown lies in the yz-plane. The elec-
tron velocity, magnetic field, and z-axis are collinear.
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where

m 2 - 2v-3/2 2 _ 2 2
Foe (Vl’ vﬂ) noe("ve) exp (vl+(v“ voe) )/ve] X =0
and
9 Foe n 3 &n Moo 2(v"-V°e)Voe 3 &n voe
= F 4 - - — —_
Ix x=0 oe ax v2 9x

e x=0

The equilibrium electron drifts associated with (2) are v:x = 0,

v = - (v2/32 )3 fn n__/éx and V°_ =V__ where V° = [d3v v F .
oy e’ e oe oz oe ~0 ~ “oe

The electron equilibrium pressure tensor is defined as

= 3 - e - e .
goe f d3v (v Yo Yy Yo ) Foe and is given by

where A, =~ (1/Qe)avoe/ax. It is the anisotropy in the pressure temsor that
provides the frsze energy to drive the instability.

The unperturbted ion distribution function is assumed to be

- 2y-3/2 —(v2 v Y2402} /2
Fos noi(ﬂvi) exp [ (vx +(vy ‘di) +vz)/vi] (6)
_ 1/2 = (v2
where v, = (ZTi/mi) is the fon thermal velocity, Vii (vi/ZQi) 3 fn noi/ax

is the ion diamagnetic drift velocity and Qi = eBo/mic is the ion clclotron
frequency.

The electrostatic dispersion equation is obtained from Poisson’s equation 4

2 = -
V269 = 4m(én - 6n,) ¢))
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§
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where 64 is the perturbed potential, Gn0 is the perturbed density of
species o, 1i.e, Gno = f d3v Gfo, and dfo is the perturbed distribution

function of species o. We define 86 = - (4me /%2)8n_ so that the dispersion
Xy o o

equation is
D(w,k) = 1 + X; * X, =0 (8)

We obtain by making use of the BGK or Krook model to describe the
Xe °Y

effects of electron collisions (Kadomtsev, 1965). That is, we comsider

(Q +yved. -8 1y, X B ¢ é—)6f = -2 ike Foe §¢-v_(8f ~ f?e F_ ) (9)
3t~ ¥ m_ec~" % 3 e n T~ 3V e e n_oe’
where v, represents the electron collision frequency. Following standard

techniques, i.e., the method of characteristics, we determine Gfe from Egqgs.

(2) and (9); then integrating over velocity space we finally obtain

202 kv K v,
= P& [y o ___Y__d_e_ __l-_z_]. oe
Xe - L 2y2 [L.[g‘ve kK v )Z(Ce) I = Z (;e)]ro(be)] x
Ve zZ e z e
ive "
(1+ kv, z (g) T (b)) ] (10)

= " iv =k A2 == 2 = -
where % (w + iv, zVoe)/kzve, Upe 4ne /me, Po(be) exp( be) Io(be),

b = k2r2 /2, r =v /@, I 1is the modified BRessel function of order
e y Le Le e e o]

0, Vde = - (vg /ZQe) 3 &n n/3x, Z is the plasma dispersion function

and 2°(g) = dz/dg.  The ion response x; is simply given by

2
= “ps (1 +z,. 2 (g,)] (11)
xi kz‘li i i




2 = 2 = -
where wpi 4mne /mi, ci (w kdei)/kvi and V

= 2
di (vi/ZQi)B 2n n/3x. Thus,
Eqs. (8), (10) and (11) describe electrostatic waves 1n the presence of a

sheared parallel electron velocity for the frequency regime Q? << w? ﬂz.

C. Analytical Analysis

In order to gain insight into the nature of the electron velocity shear
instability, we analytically solve Eq. (8) in two limiting cases: '“cold"
electrons (T, << Ty) and '"hot" electron (Te >> Ty). For simplicity, we expand
about x = X, and an consider electron velocity profile such that

Voe = (x—xo) (avoe/ax)x=xo so that Voe(x=xo) = Q.
l. Cold electrons (T, << T;)
In this 1limit, the contribution from the ions can be ignored

since ¢, << 1 and the dispersion equation can be written

i

D(w,k) = 1 +x, =0 (12)
In order to sigplify Eq. (10) we make the following assunmptions:
(w+1iv)kv <<1 and x2r2 << 1. For these conditions we rote that
e z e y Le

- - - 2 ’ = 2 ~ ] = k2,2 :
Z(ce) l/z;e 1/2;0, yA (ce) 1/;e and ro(be) i kere/Z. We find that

w? w? k k dv w w iwv
s(-Pe_ ke zz, Ll oey _pe peldinng, eyl
Xe™L 7, ok k. TR Tex v 8 &k ax WwH v
Qe (u+1ve) y y e e e e

(13)

Making use of Eqs. (12) and (13) we arrive at the following equation




D(w,k) = (l+02)w? - (13e-— o/kyLn)B -A=0 (14)

~ . ~ -1
= . = = Q =
where w (u+1ve)/wpe, Ve ve/wpe, o wpe/ue, Ln (3 2n n/3x) °,

A= (kz/ky)(kz/ky + Voe/Qe), and voe = avoe/ax. The solution of Eq. (14) is

(X1

-~
W =

[(ive-o/kyr,n)i{(ive-a/kyLn)z + 40 (1+02)} /2] (1402)7 ! (15)

We further simplify Eq. (15) by examining the following limits.

a. Collisionless plasma (ve = 0)

In the collisionless limit (ve = 0), Eq. (15) reduces to

2 -
0=2 -2 =L h a2 (o2 (16)
2 k L 242
Yy n k<L
y n
Instability can occur when
k k av 2
V= E e -2 (17)
Yy 'y e 1+a? k§L§

In the limit Ln + o, this instability criterion is identical with that derived
from the simple physical picture presented in Sec. IIA. The important aspect
of Eq. (17) 1is that the density gradient is a stabilizing influence
(Mikhailovskii and Rukhadze, 1966). 1Moreover, the density gradient is most
effective in stabilizing the instability when 02 >> 1 (i.e., wge >» Qg) and
kyLn << 1. The latter condition indicates that the density gradiemt acts to
stabilize long wavelength modes before short waQelength modes, so that a "long

wavelength cut off" should exist in inhomogeneous plasmas. We also note that

the instability attains maximum growth for




e by

(18)

b. Collisional plasma (ve #0)

We consider a collisional plasma (ve # 0), but neglect the density

gradient for simplicity (Ln + 0). In this limit, Eq. (15) becomes

w=1i 2 (1 +0?) ! [1 i’(l —'Qé(lfg—l—)l/zl (19)
2 32
e
A necessary condition for instability is )
kz kz 1 avoe
M= *g ) <o (20)
y y e

which 1s the same condition as Eq (17) for Ln + =, The growth rate is given

by
~ ‘\ 2 g
7 = (AL 5? 126 o0l 32 << 41 + 02) (21)
1402 1+02 ¢
and
- 2 . -
=A% for 32 5 4a(l + o2) (22)
v 1+02 N

Equation (21) is the weakly collisional limit and Eq. (22) is the strongly
collisional 1limit. A key parameter in determining the strength of the
instability in a collisional plasma is o = mpe/ﬂe. In fact, for o2 > 1 it
is found that collisions prevent the mode from becoming unstable. However,

for o2 + 0, instability presists, even for a large collision frequency.

10
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2. Hot electroms (T, >> T;)

In this limit the contribution from the ions cannot be ignored and

the dispersion equation 1is
D(w,k) = 1 + Xt Xe (23)

Again, to simplify Eq. (23) and to focus on the role of the ions, we make the

: i . = « 2,2
following simplifying assumptious: Ve o, Ln > o, w D> kzve, kere K1

and w >> kzvi. The susceptibilities X, are now given by

w? wge kz kz 1 avoe
Xe *RE "7, & Ot R Tix) (24)
w y ¥ e
and
wzi
x; = - == (25)
w?

w2 w2 k2 Kk v

o m
e pe z z 1 oe e
Qg w2 kf, k)’ Qe ax mi
or
(1 +02) w? - (A + E-) =0 (27)

1

Clearly, instability can occur when

kz kz 1 avoe me
hee © ra ) < w (28)
y y e i

11
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Increased stability is found when finite electron temperature is taken into
account (Harrison, 1963]. The influence of the ions is to make the
instability criterion more stringent than the «cold electron case,
i.e., A < 0. Physically, this is due to the fact that the lons are no longer
immobile and are able to respond to the perturbation field GEZ (see Fig. 1)
Also, Eq. (28) indicates that the instability is easier to excite in "heavy

ion" plasmas.

However, we can show that an instability can be excited even when Eq.
(28) is not satisfied, i.e , A > - me/mi. In this case it is crucial that

electron resonance terms be retained in Eq. (24), which have been neglected.

We expand the electron Z function as 2(z ) = - 1/z - 1/z2 + inI/
e e e

1/2

2 exp(—cg)

and Z (ce) = l/cé - ir Zce exp (—cg) so that dispersion equation becomes

1 Do 172 2%
D(w,k) = 1 +a? == (A+=) +in ' - P2 ¢ exp(-£2) A =0 (30)
w2 By x2y2 © €
zZ e

where £ = w/k v. We assume A + m /m, > O so that
e z 2 e i

m

_ 1 ,.1/2 i
W= W (1 + — Al (31) ;
e b
where Wop = upi/(l + 02)1/2. Assuming v <K w_, it is easily shown that ;
/2 % 1
¥ = -0t P2 exp(-g2) & (1+2) T w (32)
kzvz e e r
z e

so that instablity can occur when A < 0; the same instability criterion as in
the cold electron case. An important aspect of this instability is that it
has a real frequency associated with it (Eq. (31)), while the other

instabilities discussed are purely growing (i.e., w, = 0) in the absence of a

12




density gradient. We add that, as in the cold electron limit, both a density
gradient and electron collisions have a stabilizing influence on this resonant

electron velocity shear instability.

D. Numerical Results
To better illuscrate the variocus limits presented in the previous
subsection, we present a set of curves which solve Eq. (8) exactly for a broad
range of parameters. The important parameters that are varied are

Te/Ti' k r x

vTLe? /Ln’ Vo/QeL, (avoe/ax = Vo /L), ve/Qe and w /Qe. - We also

pe
consider an ot plasma for these cases, i.e., my = 16 oy - For applications to

Le

the auroral ionosphaere we use parameters typical of regions in and near
discrete auroral ar:cs. The transverse velocity shear for electron flow
parallel to ths geomagnetic field can be approximated

by :avoe/ax| e lVO/Li where L is a typical 1latitudinal arc width

and Vo A iz c::z difference in parallel streanming velocities between
the hot downward Il:wing curreant carrying electrons (Vh) and the upward
flowing cold retcrn current electrons (vc). Typical values for the

latitudinal width of discrete arcs are in the range L = 100 m — 10 km [ngis,

1978). For v, we tzke j" c T eny = 10“6 A/m2 [Anderson and Vondrak, 1975
’

c
and references therein] with n, = 104 - 105 cm_3 giving v, = 102 - 103

cn/sec. For vy, We consider the field-aligned downward flowing electrons with

energies E = 1 - 10 keV [arnoldy, 1981] giving Vi T 109 cm/sec. A4s a result,

"~

- vc)/L( = 104 :'-;ec:-1

with L = 1 km giving for the parameter lVO/QeLl = 10-2 where Qe = 106 sec-l.

an estimate for the transverse shear is lavoe/a;| = [(vh
In Fig. 3 we plot w/upe vs. Te/Ti' The solid 1lines show the growth
rate Y/upe while the dashed lines show the real frequency mr/m « The

pe
parameters used are kere = 0,1, mpe/Qe = 0.5, ve/wpe = 0,

13




V,/Q,L = —0.02

V,/QL = ~0.01

— s e —

T/ T;

Fig. 3 — Plot of w/wpe vs. Te /T, for strong shear (V,/2,L = — 0.02) and weaker

shear (V, /€2, L = — 0.01). Note stabilization for T, /T; == 1 for weak shear case.
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rLe/Ln = 1.0 x 10 for v, /QeL = - 0.0] we choose kz/ky = 0.005, and
for v /Q.L = - 0.02 we choose k,/k, = 0.010.

We first discuss the strong shear case, VO/QeL = = 0.02. We note that
the instability criteria A = (kz/ky) (kz/ky + VO/QeL) < 0 and
A= (kz/ky) (kz/ky + VO/QeL) < - me/mi are satisfied for the parameters
chosen. As expected, a nonresonant instability occurs for the entire range of
Te/Ty considered. Note that the growth rate is slightly smaller for T./T; =
102 than for Te/Ti = 1072, This is due to the stabilizing influence of the
nonresonant ion contribution (Eq. (25)). Also, there is a small real
frequency associated with this mode, wr/wpe £2x 10-4, which 1is due to the
density gradient.

The weak shear case, VO/QeL = - 0.01, is chosen such that
A= (kz/ky) (kz/ky + VO/QeL) < 0 but A = (kz/ky)(kz/ky + Vo/ﬂeL) > - me/mi'
We anticipate a nonresonant instability in the "cold" electron regime (T, <<
T;) and a resonant instability in the "hot" electron regime (Te >> Ty). This
is clearly illlustrated in Fig. 3. In the limit T, << T;, a strong
nonresonant instability occurs which asymptotes to a growth rate
of Y/wpe = 4,6 x 10~3 in the 1limit T, * 0. Also, there is a small real
frequency associated with this mode due to the density gradient which, for the
most part, has mr/mpe < 1.0 x 10_4 for T, < Ty As Te/Ti + 1, the ions become
important and stabilize the mode because of ion Landau damping,
i.e., w~ kvi. On the other hand, for Te » '1‘i the resonant instability
described in Sec. II. B. 2 is shown. Associated with this mode is a large
real frequency (Eq. (31)). The growth rate is comparable to, but smaller,
than the nonresonant '"cold”" electron mode. Again, as Te/T1 + 1, the

assumptions used to arrive at Eq. (32) break down and the mode is stabilized

by ion Landau damping.
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In Fig. 4 we plot Ym/wpe vs. kere for Vo/QeL = - 0.01, wpe/Qe = 0.5,

=3 and 103, and rLe/Ln = 0 and 1.0 x 10—4. Here, Yo denotes the

growth rate maximized with respect tc kz/ky; typically, kz/ky N 0.005 for the

Te/T1 = 10

curves shown. We first discuss the "cold" electron case (Te/'r1 = 10_3).

Instability extends over a very broad range in k
-3

y space from

to kere = 1. The growth rate maximizes for kere = 0.1.

As kere + 0, the instability is stabilized because of ion Llandau damping.

The additional damping due to a density gradient is evident by coantrasting

kere = 10

-4
the rLe/Ln 0 and rLe/Ln 1.0 x 10 ~ curves in the long  wavelength

limit (kyr <K 1). The mode is stabilized in the short wavelength

Le
limit (kere > 1) because of finite electron Larmor radius effects.

The situation for the resonant instability 4in the 'hot" electron
regime (Te/Ti = 103) is somewhat different In this case the wgvesAare ouch
more localized in ky space, with growth mostly occurring in the narrow
region kere = 0.1 - 1.0. The growth rate is sharply reduced as kere becomes
small (i.e., kere < 0.1) because the resonant electron contribution,
proportional to exp(-milki vi), becomes negligible in this limit.  Again,
for kere > 1, the mode is stabilized because of finite electron Larmor radius
effects.

In Fig. 5 we plot Y/mpe vs. ve/mpe for kere = 0.1, kz/ky = 0. 005,

3and 103

r /Ly = 1.0 x 107, V /2L = 0.01, T_/T, = 10~ ,and u /9, = 0.5 and
2.0. The important features of this figure are the following. First,
electron collisions eventually stabilize the instability regardless of
Te/Ti' Second, electron collisions are much more effective at stabilizing the
mode when mpe/Qe is large, which is consistent with the analytical analysis
presented in Sec. II. B. 1. Finally, there appears to be a weak collisional

instability for the "hot" electron case (Te/Ti = 103) when mpe/Qe > 1.
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103, and ry./L, = 0, 1 X 10—4. Note narrowing of region of unstable waves for T,/T;
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III. Summary and Discussion

We have presented a linear, electrostatic, kinetic theory of velocity
sheared electron streams flowing parallel to a magnetic field. For simplicity
we have treated the case where the electron velocity varies transverse to the
direction of the flow. Since a Vlasov analysis has been used, finite Larmor
radius effects and wave-particle resonances have been properly treated. These
are important since (1) we find appreciable wave growth for ere <1, (2)
electron-wave rescnances can be a destabilizing influence, and (3) ion-wave
resonances are a stabilizing influence. In addition, we have included an
electron density gradient transverse to the flow direction, background ion
response, and electron collisional effects. Moreover, through numerical
solution of the fundamental dispersion relation, our theory is valid for
arbitrary values of Te/Ti’ Our principal results can be summarized as

follows:

1. For "cold” (1‘e << Ti) velocity sheared electron streams, we find a

nonrescnant instability when

kz kz 1 aVoe
y b4 e

We note that a density gradient is stabilizing and provides a long
wavelength cutoff such that the unstable waves are preferentially

excited locally (x2L2 > 1).

2. For "hot" (T, >> T;) velocity sheared electron streams, our results

again indicate a nonresonant instability when
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As in the cold electron case, the density gradient exerts a
stabilizing influence. However, we have also found a resonant
(electron~wave) instability that has the same instability condition as

the cold electron case (Eq. (33)).

3. For Te = Ti, except for strong shears, (Eq. (34)), the modes are
stabilized due to ion Landau damping. Ion Landau damping also

stabilizes the long wavelength modes (i.e., k_r + 0) for

y Le
Te/Ti #0.

4. Electron collisions exert a stabilizing influence independent of
Te/Ty. Collisions are more effective for stabilization

"
when mpe/“e > 1.

In the preceeding theoretical development we have assumed that the
unstable modes have high frequencies y > Qi such that the background ions
cannot exacute a gyro oscillation on the instability time scale. Thus, the
ions are assumed unmagnetized. For v X Qi’ the ions must be considered
magnetized and the previous analysis is invalid. In this case, other

instabilities, e.g., cyclotron instabilities ([Xindel and Kennel, 1972], are

possible. We have shown a posteriori that the conditiom y > f has been met
for the parameter regimes studied.
Nonlinear numerical studies of velocity sheared ions flowing parallel to

a magnetic field have recently been performed ({Tajima and Leboeuf, 1980].

These simulations indicate classical vortex formation and the production of

20
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anomalous viscosity resulting in a quasilinear flattening of the initially
sheared velocity profile. We anticipate similar behavior for sheared electron
streams and defer a detailed study of the nonlinear evolution of electron
velocity shear instabilities in space plasmas to a later report.

For application of this theory to the auroral ionosphere, we consider the
interface, usually seen near discrete arcs, between downward flowing high
velocity hot electrons and upward streaming low velocity cold return current
electrons. 1Many experimental studies of auroral arc structure and dynamics
Carlson [1977] have detected near the edge of an F-region auroral arc,
electrostatic waves with spatial scale sizes less than the measured ambient
velocity shear scale size. These results are not inconsistent with our
findings of a local (k2 L2 >> 1) electrostatic instability due to transverse

sheared electron streams flowing parallel to the geomagnetic field. In

addition, several other investigators (Whalen and HeDiarmid, 1972; Bryant et
al., 1973; Arncldr et al., 1974] have found that high energy field-aligned
electrons are gzenerally localized near the edges of auroral arcs in regioms
separating different plasmas. These electrons have also been found to occur
in bursts. lloreover, electron energy spectra near the edges of auroral arcs
{Bryant et al., 1973 Bryant, 1981 Carlson and Kelley, 1977] often show
structure, i.e., cold low energy electron are intermixed with hot high energy
electrons and vice versa. These features, observed near the edges of auroral
arcs, may be explained by the linear and nonlinear evolution of the parallel
electron velocity shear instability. This can be seen by the following
scenario. The parallel electron velocity shear instability can evolve, in the
nonlinear regime, into vortices which can be described as'a turbulent boundary

layer near the edges of the electron flow. The vortices by their very
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nature, will tend to mix and transport hot low density electrons with cold
high density thermal electrons. These vortical strdctures will convert
kinetic streaming energy into vortical rotational energy and thereby act as a
block near the edges of the electron flow. This blockage can be described as
a "resistivity" and lead to the formation of localized electric fields and
subsequent acceleration. As the vortices grow and expand, the 1initial
velocity profile will flatten in a quasilinear fashion due to anomalous

viscosity effects {Tajima and Leboeuf, 1980; iliura and Sato, 1978]. As a

results this "resistivity" will be sporadic and bursty in character as the
velocity sheared profile alternately steepens and flattens. These hypotheses
will be tested in detail in future work.

Since, for conditions typical of discrete F-region auroral arcs, i.e.
L = 1-10 km, k /k = 1072, V.o/%L = 1072, we find unstable wavelengths

ranging ranging from A = 1 - 100 m, these irregularities could be observed

using radar backscatter methods [Hanuise et al., 1981). We note that since

collisions are stabilizing, this electron velocity shear instability will be
preferentially excited at high altitudes. In addition, throughout our

theoretical treatment of this instability, we have ignored beam instabilities

[Dungey and Strangeway 1976; Papadopoulous et al., 1974] and their

interactions with velocity gradient driven modes. Finally, these results may
be applicable to the more diffuse interface between region 1 and 2 current,

systems in the auroral ionocsphere [Iijima and Potemra, 1976] and to electron

current return current regions in solar flares [Knight and Sturrock, 1977].
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SPACE JIVISION
VALLEY FORGE SPACE CENTER

GODDARD BLVD KING OF PRUSSIA
2.0. BOX 8555
PHILADELPHIA, PA 19101
GICY ATTIN M.H. 30RINER SPACE SCI LaB

GENERAL ELZCTRIC COMPANY
?.0. BOX 1122
SYRACUSE, ¥Y 13201

01CY ATTN F. REIBERT

GENERAL ELECIRIC T=Ca SERVICEIS CO., INC.
IMES
COURT STRELT
SYRACUSE, XY 13201
JICY  ATTN G. MILLMAN

GENERAL RESEARCH CORPORATION

SANTA 3AR3ARA DIVISION

?.0. 30X 577

SANTA 3AR3ARA, CA 9311l
01CY -ATTN JOHN ISE, JR.
0lCY ATTN JOEL GARBARINO

. GZOPHYSICAL INSTITUIZ

UNIVERSITY OF ALASKA

FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATIN T.N. DAVIS (UNCLASS ONLY)
0!1CY ATTYN TECHENICAL LIBRARY
01CY ATIN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATIN MARSHALL CROSS

HSS, INC.
2 ALFRED CIRCLE
3EDFORD, MA 01730
01CY ATIN DONALD HANSEN

ILLINOIS, UNIVERSITY OF

107 COBLE HALL

150 DAVENPORT HOUSE

CHAMPAIGN, IL 61820
(ALL CORRES ATTN DAN MCCLEZLLAND)
Q1CY ATIN X. YEH

INSTITUTE FOR DEFEINSE ANALYSES
00 ARMY-NAVY DRIVE
ARLINGTON, VA 22202
Q1CY  ATIN J.M. AZIN
01CT ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
Q1CY ATTN JOEL BENGSTON

INTL TEL & TELZGRAPH CORPORATION
500 WASHINGION AVENUE
NUTLEY, NJ 07110

0I1CY ATIN TECHNICAL LIBRARY

JAYCOR
11011 TCRRETANA ROAD
P.0. 30X 85154
SAN DIZGO, CA 92138
01CY AITN J.L. SPERLING

JOHIS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAURAL, MD 20810
01CY ATTIN DOCUMENT LIBRARIAN
01CY ATIN THOMAS POTEMRA
-01CY  ATTN JOHN DASSOULAS

KAMAL SCIENCES CORP
P.0. BOX 7463
COLORADC SPRINGS, CO 30933

01CY ATTIN 7. MEAGHER
KAMAN TEMPC-CINTER FOR ADVANCED STUDIES
816 STATE STREET (2.0 DRAWER QQ)
SANTA BARBARA, CA 93102

01CY ATTN DASIAC

01CY ATTN TIM STEPHANS

G1CY ATIN WARREN S. KNAPP

01CY ATIN WILLIAM MCNAMARA

01CY ATTN B. GAMBILL

LINKABIT CORP

10453 ROSELLE

SAN DIEGO, CA 92121
01CY ATTIN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC
P.0. B0X 504
SUNNYVALE, CA 940838

0l1CY ATIN DEPT 60-12

01CY ATIN J.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC.
3251 HANOVER STREET
PALO ALTO, CA 94304
ClCY ATIN MARTIN WALT DEPT 52-12
01€Y ATIN W.L. DSIOF DEPT 5i~12
QlCY ATTHN RICKARS G. JGHNSON DEPT 5I-12
01CY ATIN J.B. CLADIS DEPT 52~-12

LOCKHEEZD MISSILI § SPACE CO., INC.
HUNTSVILLE RESZARCHE § INGR. CTR.
4800 3RADFCRD DRIVE
HUNTSVILLE, AL 338C7

ATTN DALE H. DIVIS

MARTIN MARIETTA CORP
ORLANDO DIVISION
P.0. 30X 5837
CRLANDG, FL 32805
01CY ATIN R. HEFFNER

M.I.7. LINCOLN LABORATORY °
P.0O. 30X 73
LEXINGTON, Ma 22173

GICY  ATTN DaVID M. TOWLE

0ICY ATIN 2. WALDRON

01CY AITY L. LOUGHLIN

0l1CY ATIN D. CLARK

MCDONNEL DOUGLAS CORPORATICN
5301 3BO0LSA AVENUE
HUNTINGTON BEACH, CA 92647
01CY ATTN N. HARRIS
01CY ATIN J. MOULE
01CY ATTN GEORGE MROZ
01CY ATTN W. OLSON
0lCY ATTN R.W. HALPRIN
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0lCY ATTN TECHNICAL LIBRARY SERVICES

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
01CY ATTN P. FISCHER
2iCY¥ ATIN W.7. CREVIER
QI1CY ATTN STEVEN L. GUISCHE
Ol1CY ATIN D. SAPPENFIZLD
0ICY ATTN R. BOGUSCH
0l1CY ATIN R. HENDRICK
Q1CY ATTN RALPH KILB
01CY ATTN DAVE SOWLE
QICY ATTN F. FAJEN
21CY  ATIN M. SCREIBE
Ql1CY ATTN CONRAD L. LONGMIRE
01CY ATIN WARREN A. SCHLUETER

MITRE CORPORATION, THE

?2.0. BOX 208

BEDFORD, MA 01730
U1CY ATTIN JOHN MORGANSTERN
Ql1CY ATIN G. HARDING
Q1CY ATIN C.E. CALLAHAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISCN BLVD
MCLEAN, va 22101
01CY  ATIN Ww. HALL
QICY AITY W. FOSTER

PACITIC-S3TZRRA RESEARCH CORP
1436 CLOVERFIELD 3LVD.
SANTA MONICA, CA 90404

J1CY  ATTX Z.C. FIELD, JR.

FENNSYLVANIA STATE UNIVERSITY
ICNOSPHERE RESEARCH La3
218 ILECTRICAL EINGINEERING ZasT
UNIVERSITY 2aRK, Pa 16802

{NC CLASS 7O THIS ADCRESS)

CICY  ATTN ICNCSPHERIC RESZARCH LAB

PHITINITRICS, INC.

<=l MARRETT R042

LEIINGTON, A G21i73

GiCT  ATTN IRVING L. XCFSKY

2.0. 30X 3027
3ELLIVUE, WA 98009
-JICY  ATIN Z.J. FREMOLW

PHYSICAL DYNAMICS, INC.

?.0. 30X 10367

CAKLAND, CA 94610
ATTN A, THCMSON

R & D ASSOCIATZ

P.0. 30X 9695

MARINA DEL REY, CA 90291
Q1CY ATTN FORREST GIILMORZ
01CY ATTN BRYAN GABBARD
0I1CY ATTY WILLIAM B. WRIGHT, JR.
01CY ATTN ROBERT F. LELZVIER
0lCY ATIN WILLIAM J. KARZAS
01CY AITN H. ORY
01CY ATIN C. MACDONALD
01CY ATTN R. TURCO

RAND CORPORATION, THE

1700 MAIN STREET

SANTA MCNICA, CA 90406
01CY ATTN CULLEN CRAIN
01CY ATTN ED BEDROZIAN

RAYTHEON CO.
528 BOSTON POST ROAD
SUDBURY MA 01776

0ICY ATIN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
80 WEST END AVENUE
NEW YORK, NY 10023

Q1CY ATIN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.

P.0. BOX 2351

LA JOLLA, CA 92038
OICY ATTN LEWIS M., LINSON
O1CY ATTN DANIEL A. HAMLIN
QICY ATIN E. FRIZMAN
01CY ATIN E.A. STRAKER
ClCY ATIN CURTIS 4. SMITH
ClCY ATIN JACK MCDOUGALL

SCIENCZ APPLICATIONS, INC
1710 GOODRIDGE IR.
MCLZAN, VA 221902

ATTH: J. CCCKAYNE

SRI INTERNATIONAL

333 RAVENSWOOD AVENLE

MENLO PARK, CA 94025
01CY ATTN DONALD NEILSON
0iCY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTIN L.L. COBB
QlCY ATTN DAVID A. JOENSON
01CY ATTN WALTER G. CHESNUT
Q1CY ATIN CHARLES L. RINO
01CY ATTIN WALTER JAYE
01CY ATTN M. BARON
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTEK
Gi1CY ATIN G. PRICE
QICY ATIN J. PETERSON
C1CY ATIN R. HAKE, JR.
01CY ATIN V. GONZALES
01CY ATIN D. MCDANIEL

STEWART RADIANCT LABORATORY
UTAH STATE UNIVERSITY
1 DE ANGELO DRIVE
SEDFORD, MA 01730
01CY ATIN J. ULWICK

TZCHNOLOGY INTZRWNATIONAL CORP
75 WIGGINS AVENUE
SEDFCRD, MA (1730

01CY  ATTN W.P. BOQUIST

TRW DEFENSE & SPACE SYS GRCLP

ONE SPACZ 24ARK

REDONDQ BEACH, CA 90278
01CY ATIN R. K. PLEBUCH
Q1CY  ATTN S. ALTSCHULZR
01CY¥ ATIN D. DEE

VISIDYNE

SOUTH BELFORD STREET

BURLINGTON, MASS 01803
JICY  ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATIN C. HUMPHREY

32




1ONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)
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PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE:

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
DR. P. MANGE - CODE 4101
DR. R. MEIER - CODE 4141
DR. E. SZUSZCZEWICZ -~ CODE 4187
DR. J. GOODMAN - CODE 4180
Dr. R. RODRIGUEZ -~ CODE 4187

A.F. GEOPHYSICS LABORATORY

L.G. HANSCOM FIELD

BEDFORD, MA 01730
DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T.J. KENESHEA
DR. J. AARONS
DR. H. CARLSON
DR. J. JASPERSE

CORNELL UNIVERSITY

ITHACA, NY 14850
DR. W.E. SWARTZ
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

HARVARD UNIVERSITY

HARVARD SQUARE

CAMBRIDGE, MA 02128
DR. M.B. McELROY
DR. R. LINDZEN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARMY/NAVY DRIVE
ARLINGTON, VA 22202

DR. E. BALER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER

LIBRARY, NW16-262

CAMBRIDGE, MA 02139

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771

DR. S. CHANDRA

DR. K. MAEDA

DR. R.F. BENSON
NATIONAL TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314

12CY ATIN TC

COMMANDER

NAVAL AIR SYSTEMS COMMAND

DEPARTMENT OF THE NAVY

WASRINGTON, D.C. 20360
DR. T. CZUBA

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO. CA 92152

MR. R. ROSE - CODE 5321

NOAA

DIRECTOR OF SPACE AND ENVIRONMENTAL

LABORATORY
BOULDER, CO 80302

DR. A. GLENN JEAN

DR. G.W. ADAMS

DR. D.N. ANDERSON

DR. K. DAVIES

DR. R. F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217

DR. G. JOINER

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802

DR. J.S. NISBET

DR. P.R. ROHRBAUGH

DR. L.A. CARPENTER

DR. M. LEE

DR. R. DIVANY

DR. P. BENNETT

DR. F. KLEVANS

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NJ 08540

DR. F. PERKINS

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037

DR. D.A. HAMLIN

DR. L. LINSON

DR. E. FRIEMAN

STANFORD UNIVERSITY
STANFORD, CA 94305
DR. P.M. BANKS

U.S. ARMY ABERDEEN RESEARCH
AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATCRY

ABERDEEN, MD
DR. J. HEIMERL

UNIVERSITY OF CALIFORNIA,
BERKELEY

BERKELEY, CA 94720
DR. M. HUDSON

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
J-10, MS-664
LOS ALAMOS, MM 87545
M. PONGRATZ
D. SIMONS
G. BARASCH
L. DUNCAN
P. BERNHARDT
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UNIVERSITY OF CALIFORNIA,
LOS ANGELES

405 HILLGARD AVENUE

LOS ANGELES, CA 90024
DR. F.V. CORONIT!
DR. C. KENNEL
DR. A.Y. WONG

UNIVERSITY OF MARYLAND

COLLEGE PARK, MD 20740
DR. K. PAPADOPOULOS
DR. E. OTT
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UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
DR. N. ZABUSKY
DR. M. BIONDI
DR. E. OVERMAN

UTAH STATE UNIVERSITY
4TH AND 8TH STREETS
LOGAN, UTAR 84322

DR. R. HARRIS

DR. K. BAKER

DR. R. SCHUNK







